

VOLUME 55, NUMBER 19

SEPTEMBER 14, 1990

© Copyright 1990 by the American Chemical Society

Communications

Copper Azide as a New Reagent for Syn-S_N2 Displacement of γ -Sulfonyloxy α,β -Unsaturated Esters

Yoshinori Yamamoto* and Naoki Asao

Department of Chemistry, Faculty of Science, Tohoku University, Sendai 980, Japan

Received May 17, 1990 (Revised Manuscript Received June 26, 1990)

Summary: The reaction of γ -sulfonyloxy α,β -unsaturated esters with NaN₃-CuX(or CuN₃) in polar aprotic solvents such as HMPA, DMSO, and DMF proceeds predominantly in a syn-S_N2 fashion, while the reaction with NaN₃ proceeds in an anti-S_N2 manner.

It is widely accepted that the substitution of sulfonates with metal azides, such as lithium, sodium, and potassium azides, proceeds with inversion of configuration (anti- $S_N 2$).¹ We report that copper azide reacts with γ -sulfonyloxy α,β -unsaturated esters in a syn- $S_N 2$ fashion. As expected, the reaction of (R)-1 with NaN₃ gave (S)-2 in 86% yield with 100% ee. Quite surprisingly, the similar reaction of (R)-1 with NaN₃-CuI produced (R)-2 in 90% yield with 82% ee (eq 1). Both (S)- and (R)-2 are precursors for a γ -aminobutyric acid transaminase inactivator, 4-amino-5-hydroxypentanoic acid, whose absolute configuration has not been determined.²

To investigate scope of the syn- S_N^2 substitution, we examined the reactions of several sulfonates³ (Table I).

entry	compd	reagent	reaction conditions	yield,ª %	ratio ^b syn-S _N 2: anti-S _N 2
					8:9
1	3	NaN ₃ -CuI	HMPA, 4 h	86	85:15
2	3	NaN ₃ -CuI	DMSO, 0.5 h	83	82:18
3	3	NaN ₃ -CuBr·SMe ₂	DMSO, 0.5 h	88	84:16
4	3	NaN ₃ -NH ₄ Cl-CuI	DMSO, 0.5 h	85	75:25
5	3	NaN ₃	DMSO, 5.5 h	42°	0:100
6	3	CuN ₃	DMSO, 0.7 h	81	71:29
					9:8
7	4	NaN ₃ –CuI	HMPA, 4 h	67	84:16
8	4	NaN ₃ –CuI	DMSO, 0.5 h	89	80:20
					8:9
9	5	NaN ₃ -CuI	DMSO, 0.5 h	83	80:20
					10:11
10	6	NaN ₃ -CuI	HMPA, 1.5 h	50	76:24
					12:13
11	7	NaN ₃ -CuI	DMSO 0.7 h	87	83:17

Table I.	Reactions	of	Sulfonates	with	Metal	Azides

 a Isolated yield. bDetermined by 270-MHz 1H NMR. $^cThe starting material was recovered in 15% yield.$

The reaction of 3 with the combination reagents $(NaN_3$ -copper salts) gave the syn- S_N^2 product (8) in high yields with good stereoselectivity (entries 1-4), although the reaction with NaN₃ in DMSO afforded the anti- S_N^2 product in 42% yield (entry 5). The sluggish reaction in NaN₃-DMSO system is due to the low solubility of NaN₃; the reaction is often carried out in an aqueous solution to enhance the speed of substitution. However, the complex reagent NaN₃-CuX is soluble in organic solvents such as

Scriven, E. F. V.; Turnbull, K. Chem. Rev. 1988, 88, 297 and references cited therein.
Silverman, R. B.; Levy, M. A. J. Org. Chem. 1980, 45, 815. Davies,

⁽²⁾ Silverman, R. B.; Levy, M. A. J. Org. Chem. 1980, 45, 815. Davies, J. S., Ed. Amino Acids and Peptides; Chapman and Hall: New York, 1985.

⁽³⁾ These sulfonates were prepared according to the literatures. (a) 1: Fronza, G.; Fuganti, C.; Grasselli, P.; Marinoni, G. Tetrahedron Lett. 1979, 3883 and references cited therein. (b) 3, 5, and 6 were prepared from sorbic acid methyl ester, and also see: Ibuka, T.; Nakao, T.; Nishii, S.; Yamamoto, Y. J. Am. Chem. Soc. 1986, 108, 7420. (c) 4: Ibuka, T.; Nishii, S.; Yamamoto, Y. Chem. Express 1988, 3, 53. (d) 7 was prepared from DL-2-phenylpropanal.

DMF, HMPA, DMSO, and MeOH, and the reaction is rapid compared to that of NaN₃ itself. We anticipated that copper azide would be formed in situ by mixing NaN_3 with CuI in the organic solvent. Actually, the reaction of 3 with CuN₃, independently prepared by the reported procedure,⁴ gave syn-8 predominantly in good yield (entry 6). The reaction of 4, the diastereomer of 3, with NaN₃-CuI also gave the syn- S_N^2 product (9) (entries 7 and 8). The substitution proceeded quite smoothly with the tosylate 5 (entry 9). Other leaving groups, such as acetate and phosphonate, are ineffective. The substituent at the δ position did not exert a significant influence upon the diastereoselectivity (entries 10 and 11). The hydroxy-, siloxy-, and alkyl-substituted derivatives produced the syn selectivity. It is also noteworthy that the geometry of the allylic azides obtained in Table I is E. The syn- $S_N 2$ displacement was also observed with $(4R^*, 5S^*)$ -(E)-4-((methylsulfonyl)oxy)-5-(tert-butyldimethylsiloxy)-2-hexenophenone, indicating that the present method may be applicable to α,β -unsaturated ketones.

3	R ¹ =Me, R ² =OTBS, R ³ =H, R ⁴ =OMs	8 R ¹ =Me, R ² =OTBS, R ³ =H, R ⁴ =N ₃
4	R ¹ =Me, R ² =OTBS, R ³ =OMs, R ⁴ =H	9 R ¹ =Me, R ² =OTBS, R ³ =N ₃ , R ⁴ =H
5	R ¹ =Me, R ² =OTBS, R ³ =H, R ⁴ =OTs	10 R ¹ =Me, R ² =OH, R ³ =N ₃ , R ⁴ =H
6	R ¹ =Me, R ² =OH, R ³ ≕OMs, R ⁴ =H	11 R ¹ =Me, R ² =OH, R ³ =H, R ⁴ =N ₃
7	R ¹ =Ph, R ² =Me, R ³ =OMs, R ⁴ =H	12 R ¹ =Ph, R ² =Me, R ³ =N ₃ , R ⁴ =H
		13 $B^{1}=Ph$, $B^{2}=Me$, $B^{3}=H$, $B^{4}=N_{e}$

The structures of 8-13 were assigned unambiguously by converting them to the corresponding amino alcohol derivatives. For example, 9 was converted to 4-amino-5-(*tert*-butyldimethylsiloxy)-1-hexanol upon treatment with LiAlH₄ followed by hydrogenation over Pd-C. The authentic material was prepared by the allylation of the corresponding imine with allyl-9-BBN,⁵ followed by hydration of the double bond with 9-BBN (see the supplementary material).

The syn-S_N2 substitution with copper azide can be accounted for by considering a π -allyl copper intermediate

(14) (Scheme I). The attack of CuN_3 to the substrate would take place in an anti manner,⁶ giving the π -allyl copper complex 14.7 The attack of azide ion from the face opposite to the π -allyl copper gives the stereo-retained product (route c). The intramolecular delivery of azide affords the stereo-inverted product (route d). Obviously, the reaction mainly proceeds through the path c. The π -allyl mechanism is also supported by the following observation. Use of excess copper azide (or NaN₃-CuX) produced higher syn stereoselectivity. Normally we used 5-10 equiv of copper azides. The reaction of 3 with 1.7 equiv of NaN3-CuI in HMPA was relatively sluggish and resulted in low chemical yield and low stereoselectivity; 24% yield and syn/anti = 66/34. Accordingly, the intramolecular delivery must be slow in comparison with the intermolecular attack. Of course, the isomerization of π -allyl ligand may be conceivable for formation of the minor anti product. However, the E geometry of the allylic azides would eliminate such possibility. Irrespective of the precise mechanism, the syn- $S_N 2$ substitution⁸ opens a door to new syntheses via CuN_3 .

Preparation of 8 from 3 is representative. To a suspension of NaN₃ (372 mg, 5.7 mmol) in HMPA (5.7 mL) was added CuI (1.088 g, 5.7 mmol) at room temperature in an Ar atmosphere. After being stirred for 5 min, the mixture became homogeneous and the color of the solution changed to brown. The mixture was stirred for 0.5 h before the addition of a solution of 3 (196 mg, 0.56 mmol) in HMPA (2 mL). After being stirred for 4 h, the mixture was cooled to 5 °C, and a mixture of saturated NH₄Cl (6 mL) and 28% $\rm NH_4OH$ (3 mL) was added. Then, the mixture was allowed to warm to room temperature, and stirring was continued for 15 min. The mixture was extracted with Et₂O. The extract was washed successively with water and brine and dried over anhydrous Na₂SO₄. Removal of the solvents under reduced pressure gave an oily material. Purification by silica gel column chromatography using *n*-hexane-AcOEt (5:1) as an eluant gave the product in 86% yield (144 mg, 8:9 = 85:15) along with 15 mg of recovered 3.

Supplementary Material Available: The spectral data and elemental analyses of 1-13 and the stereochemical determination of the diastereoisomers (18 page). Ordering information is given on any current masthead page.

⁽⁴⁾ Singh, K. Trans. Faraday Soc. 1959, 55, 124.

⁽⁵⁾ Yamamoto, Y.; Nishii, S.; Maruyama, K.; Komatsu, T.; Ito, W. J. Am. Chem. Soc. 1986, 108, 7778. Yamamoto, Y.; Komatsu, T.; Maruyama, K. J. Chem. Soc., Chem. Commun. 1985, 814.

⁽⁶⁾ The organocopper substitution of allylic carboxylates and sulfonates proceeds through antistereochemistry. For example: (a) Underiner, T. L.; Paisley, S. D.; Schmitter, J.; Lesheski, L.; Goering, H. L. J. Org. Chem. 1989, 54, 2369. (b) Ibuka, T.; Tanaka, M.; Nishii, S.; Yamamoto, Y. J. Am. Chem. Soc. 1989, 111, 4864. The substitution with CuN_3 may take place either path a or path b.

⁽⁷⁾ One referee suggests an another possibility for the syn-S_N2 displacement: double inversion via η^1 -Cu intermediates. A π -allyl derivative of Cu is frequently proposed as an intermediate of certain alkylation reactions, although its structure is not well characterized: for example, Goering, H. L.; Kantner, S. S. J. Org. Chem. 1983, 48, 721.

⁽⁸⁾ During our study, it has been reported that a similar syn- S_N^2 displacement takes place with Pd(0) catalysts. Murahashi, S.-I.; Taniguchi, Y.; Imada, Y.; Tanigawa, Y. J. Org. Chem. 1989, 54, 3292.